1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
import cv2 import numpy as np import os
def split_image_auto(image_path, output_dir, min_width=30, min_height=30): image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) h, w = gray.shape corners = [gray[0, 0], gray[0, w-1], gray[h-1, 0], gray[h-1, w-1], gray[h//2, w//2]] avg_bg = np.mean(corners) if avg_bg > 200: ret, thresh = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV) elif avg_bg < 50: ret, thresh = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY) else: ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) kernel = np.ones((3, 3), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) if np.std(gray) < 30: edges = cv2.Canny(gray, 30, 100) thresh = cv2.bitwise_or(thresh, edges) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not os.path.exists(output_dir): os.makedirs(output_dir)
index = 0 for contour in contours: x, y, w, h = cv2.boundingRect(contour) if w > min_width and h > min_height: sub_img = image[y:y+h, x:x+w] cv2.imwrite(os.path.join(output_dir, f"sub_image_{index}.png"), sub_img) index += 1
print(f"共分割出 {index} 张图片,保存在 '{output_dir}' 目录下。")
split_image_auto("ChatGPT Image 2025年4月2日 10_04_51.png", "output_1") split_image_auto("ChatGPT Image 2025年4月2日 10_20_11.png", "output_2")
|